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Overview of Optoelectronics

 Light emission:
— Incandescent lamps
— Light emitting diodes
— Laser diodes
— Vacuum fluorescent devices
— Plasma devices
— Gas lasers
— Electroluminescent devices

- Light detection:
— Photoconductors
— Solar cells
— Photodiodes
— Phototransistors
— Integrated photodetector chips
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Incandescent Lamps

 Incandescent lamps - the most common type used
around the house - rely on heating up a thin wire
(usually tungsten, but carbon before 1907) to white
heat.

« The resistance of the wire increases with temperature
(as do the resistances of most materials — “positive
temperature coefficient of resistance”) so that it does
not have “thermal runaway.”

» As seen in the original Hewlett-Packard Wein bridge
oscillator, a light bulb can be used as a regulator for
power or amplitude.
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Incandescent Lamps

Glass Bulb
Gas Filling

Tungsten Filament

Support Wires
Lead Wires
Dumet Wire
Exhaust Tube
Stem

Fuse

< Cap

http://www.lamptech.co.uk/Documents/IN%20Introduction.htm

_ Most developed nations have, or are
Carbon-filament lamp, in the process of implementing phase-
Pre-1907. out plans for incandescent lamps.

http://www.teralab.co.uk/Museum/Lamps/
Museum_Lamps_Page1.htm
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LEDs - Overview

- Light emitting diodes, or LEDs, are inexpensive,
solid-state light emitters.

- With improved new technologies, they are bright
enough that they can be used for illumination (e.g.,
flashlights) with very low power consumption.

- They do no emit much heat, resist shocks, and last
for tens of thousands of hours.

- They are increasingly being used for traffic signals,
commercial and home lighting, LCD monitor and TV
backlighting, etc.
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LED Mechanisms

Bl linjesilon  When a forward bias is
Large Numbers of —> applied to an LED, electrons
Electrons .
_________________ 2 acquire enough energy to
TN [ cross from the n+ through
hv the depletion region to

Transitions on the n+
side are non-radiative.

recombine in the p+ region
(similar for holes leaving the
valence band).

Large Numbers of

Holes « Photons are emitted with no
phase relationship to each
other (incoherent).

- Very bright LEDs are now
commonplace (>3 cd).

Typical materials: GaP,

GaAs, GaAsP, SiC, etc. - Direct bandgap, large

quantum efficiency (>80%).
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Basic Low-Power LED

Bond Wire

Epoxy Lens  Metal

Lead-Frame

CATHODE
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Simple LED Drive with Resistor

If driving from a
voltage source,
should limit current
using a series
resistor.

Need to know the
forward voltage of
the LED to calculate
the resistor’ s value.

Determine the LED
forward voltage,
select the current
you want (usually
not more than 20
mA) and compute

I:‘LED'

IMAX -

RLE =

_ VsuprLy

R

VS UPPLY ~— VfLED

I LED
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I=0

When all voltage
is dropped
across the diode



Homemade LED llluminator
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Originated by Hewlett-Packard in 1969 (the 5082-7100
series), descendants of these displays remain among
the most legible and beautiful (and most expensive).

On-board decode logic translates 4-bit parallel data into
the LED matrix pattern.
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Example LED Display Types
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Bench Tour: Examples
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Bench Tour:
Examples

http://powerelectronics.com/site-files/
powerelectronics.com/files/archive/
powerelectronics.com/
power_management/led_drivers/Fig-1-
LCD-display-structure.jpg

LCD Display module

Light guide l. AN

Side emitting LEDs

lignal Sources
and
|terface Circuits
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Bench Tour: Examples
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Improvements In LED Lighting

« Primary goal is efficiency (lumens/watt).

« Striving for good color temperature (warm is what people are used to,
not bluish).

* Reliability is key.

* Dollars per lumen is another interesting metric.
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Full-Color LED Displays

http://ecem1.myblog.it/archives/2011/10/index-25.html

http://led-screen.zapled.co.uk/outdoor-led-video-mesh-screen/
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LUMENS PER WATT

Improvements In LED Lighting

FIGURE | LED EFFICIENCY IS RAPIDLY SURPASSING THAT OF INCUMBENT LIGHTING TECHNOLOGIES®

150
SODIUM-VAPOR LAMP
100
FLUDRESCENT LAMP
S0
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http://www.energycircle.com/blog/2012/06/21/led-lighting-massive-opportunity-getting-better
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http://www.superbrightleds.com/
moreinfo/component-leds/xpe-series-
cree-led/325/

10

NS

. http://www.cree.com/LED-Components-and-
http://www.ledssuperbright.com/ Modules/Products/XLamp/Arrays-
images/100W_eylane.jpg NonDirectional/XLamp-CXA2540

http:/www.ledengin.com

Chip-On-Board (COB) array examples.
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Commercial LED Lighting

« Initial offerings were very poor. Cheaply built,
poorly designed and expensive too!

* Newer designs may well realize the long-life
potential of LED’s 20 — 50,000 hrs.

Philips 17W, 1055 Im lamp
(indirect phosphor).

http:/www.lighting.philips.com

Ecosmart 17W, 950 Iim lamp.

http:/www.homedepot.com
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« LED lighting is revolutionary and is taking off.
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Flashlight Driver IC: LTC3453

High Efficiency Torch/Flash LED Driver
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http://cds.linear.com/docs/en/
datasheet/3453fa.pdf
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Off-Line LED Driver IC: MAX16841
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Off-Line LED Driver IC: MAX16841
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Visualizing Infrared Emitters

- Infrared-emitting LEDs can be visualized using a CCD
camera (such as a camcorder) because silicon detectors are
sensitive to short-wavelength infrared light.

- You can also use special infrared phototransistors (in
smoky gray packages).

- A simple visualizer is an IR phototransistor in series with a
visible LED.

- Phosphor cards are also available (Thorlabs, Edmund
Scientific, Kodak) that “translate” IR into visible light.

. ARCIHER® Cat. No. 276-0099
INFRARED SENSOR

I

I

f This sensor can be used to identify and locate

{ near-infrared radiation emanating from either
LED or laser sources.

VRC4
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Optoisolators

LED

Glass /

Insulator Silicon

Phototransistor
Lead-Frame

-« Optoisolators are assemblages of electrically isolated emitters and
detectors that use light to send information across a transparent

insulator (glass, air, etc.)

 The circuits on either side of the insulating gap can be thousands of
volts different, and this is useful in industrial, medical (patient isolation)
and automotive applications.

- Most modern optoisolators use LED’s and phototransistors and have
switching speeds in the MHz range. Special, feedback-linearized
optoisolators exist for analog signal transmission and are covered in
EE122B.
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Modulation of LEDs

- LEDs can be modulated very fast, using current
sources or simple voltage switches.

- MHz data rates are possible, and this is a common
way to transmit signals optically (e.g., some
consumer audio equipment).

- Interestingly, your retina can resolve light pulses
in the few nanoseconds, but the perceived length
iIs as much as eight orders of magnitude longer -
this is the impulse response of your visual
system.

ey ) EE122A, Stanford University Copyright © 2020, Prof. Greg Kovacs
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Example Blinker - LM3909

Typical 1.5V Flasher Dual-In-Line Package
Ruim r -1 v* SLOW
RC
6 | 5
R +
; T A T P
| 400 8 3
I 20k 400
ouT
HFEH .
’ B E B E
a1 3k ouT NC V-
FAST
10k RC
100 TL/H/7969-2
SLOW RC Top View
o= ] . Order Number LM3909N
I See NS Package Number NOSE
Bk S—
FAST RC
1 /é/zok |
-y
1 A o
3* D' _ .
6.5V | v Source: National
L - at Semiconductor
- - LM3909 Datasheet.

TL/H/7969-1
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LED Bar Graph Driver - LM391X Series

0V to 5V Bar Graph Meter
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| v
6.8vV-18V
b e —— — R1
1.21k
R2
Current-source 383
drive - no resistors
- I ov-5v
required! SIGNAL
SOURCE
DS007970-1
Ref Qut V = 1.25 (1 + E
R1
| - 12.5
LED = R1
Note: Grounding method is typical of all uses. The 2.2 pF tantalum or 10 pF aluminum electrolytic capacitor is needed if leads to the LED supply are 6" or

longer.

Source: National Semiconductor
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Simple Gated Pulser

A V+

> O
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Gate o
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Can use 74HC, 74HCT, or
4000-series CMOS (4000-
series can operate over
wider supply voltage
ranges).
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Simple Current Driver with PWM
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Hacked Infrared Blinker

- Easy to modify an
inexpensive safety
blinker light to use
infrared LEDs instead

of visible.

- Can also hack the
flash frequency.
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Solid-State Lasers

- Single Heterojunction - pulsed - needs very small
pulses of very large currents to lase.

- Double Heterojunction - CW - what is in laser
pointers, laser printers, etc.

EE122A, Stanford University Copyright © 2020, Prof. Greg Kovacs
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Hacking the Laser Pointer
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High-Power Laser Diodes




Avalanche Transistor Pulser

+135 VOLTS
o
- By triggering R
avalanche 2 vaw
breakdown in I
transistors, very | A
high energy, short e e
current pulses can 1N0004 e
be obtained. o
e ek
- The energy stored o 2 b o
in a capacitor is - 10
rapidly discharged  ——

through the laser.

Source: “Semiconductor Diode
Lasers,” R. W. Campbell and F. M. Mims,
H. W. Sams & Co., 1972.
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Williams’ Avalanche Pulser

- Excellent way to generate
ultrashort pulses. + 90 VDC

« Can be modified to drive lasers

or LEDs. 1 M€2
- See LTC AN-47 for details on
choosing the transistor, etc. N2369 ~[>2PF

o Qutput

Source: Linear Technology, AN-47
“High Speed Amplifier Techniques,”
1991.
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Williams’ Avalancher on 1 GHz Scope

OPH 8 VZR 0 . 200ny

sUCRD = 19.53nU | aHCRD = 1.816nS
969.7p 969.7p WIDTH |

) CE—— —
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Avalanche LED Driver
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Laser Tag
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Gas Discharge Lamps

« A variety of cool
displays can be
achieved using gas
discharge lamps.

- Simple NE-2 (neon)
lamps break down
around 65 - 90V and
can be used for
blinkers and power
indicators.

« More complex
devices are also
possible.

See: http://www.neonshop.com/




Plasma Art
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Check out: http:/strattman.com/
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Detecting Light

- Light sensors are essential for a large variety of
devices.

- Examples: optical data links, camera exposure
meters, automatic night lights, clock display
dimmers, etc.

- There are basically two types to be considered in
EE122: junction type and photoconductors.

ey ) EE122A, Stanford University Copyright © 2020, Prof. Greg Kovacs
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Mechanisms of Light Detection
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Solar Cells

- Solar cells are
photojunctions that are
designed to produce

useable electrical power
(theory about 100 mW/cm?
at 100% efficiency on
Earth).

- Many surplus sources

have good deals on them,
and you can easily design
simple circuits that are
entirely light powered.
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In space, you can choose solar or nuclear (for now).
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Photodiodes/Phototransistors

- Photodiodes and phototransistors (usually the
base lead is not used, so they can be treated as
similar parts) are common detectors for light.

- They are capable of detecting fast light pulses (up
to GHz rates in some cases) if they are
appropriately designed and have fast circuitry to
work with.

- They are inexpensive, and are available for visible
light and for IR (some have built-in smoky gray
filters).
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Typical Photodiodes




Typical Phototransistors
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Light-To-Frequency Converter

+5V TO +15V
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Source: National
Semiconductor

N . LM331 Datasheet.
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Fast Optical Data Receiver

TEST CIRCUIT

PULSE
GENERATOR

+

FIBRE OPTIC
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Source: Linear Technology, AN-47
“High Speed Amplifier Techniques,”
1991.
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Shannon’ s Theorem

\)
C = Blogz(—+ |

C = channel capacity in bits/second
B = bandwidth in Hz

S = signal level

N = noise level
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Photoconductors
- The CdS Cell

Incoming photons of sufficient
energy promote carriers into
the conduction band.

If they have sufficiently long
lifetimes, the resistance of the
photoconductor decreases.

Thus, they act like light-
controlled resistors and can
be substituted for ordinary
resistors in circuits.

Key - they are much slower to
respond than photojunctions!

Light

+

) (DC)
O—®

Ammeter

Output

Top View

Leads Photoconductor
Top
etallization

= I A =
Ceramic
Substrate

Side (Cut-Away) View
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Typical CdS Cells
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Example - Light-Controlled Amplifiers

Vv R1 Rf
* All of the common op-  , , ' %
amp configurations can R3
be made light sensitive VSO_"‘F:‘:" Vour
by substituting a CdS V40—
cell for one or more
resistors.

- Could make an amp
that turned down the
volume on a stereo
when the lights were
dimmed, or could use
this to make a radio
that got louder when
the sun came up.

_(,, R2
AV_\1+R1

Vout

EE122A, Stanford University Copyright © 2020, Prof. Greg Kovacs 55



Integrated Photosensors

- There are several integrated photodetectors on
the market, incorporating amplifiers and even
current-to-frequency converters on the same chip
as the photosensor.

« Taos: www.taosinc.com

« Hammamatsu: www.hamamatsu.com

Source: \|
oy oo Texas )
Pin3 OUT Instruments
Datasheet VWV—0

B Voltage
§ A . > ¢ Outpgt
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www.taosinc.com

Light-to-Voltage
=t Converters

., TSL 250 series
' 1 This family provides a
- lipear cutpat voltage signal

. J proportional to incident CMOS
light intensity and is Linear Arrays
packagad inacompact. TSL 201. 1301
3 3

., 1401 series

Fully lntegrated .,,v'/ ; 'l'rt:.s f.‘lmit:'}.l.tm.\\‘fido

i to-F e " the capability o
Uight-to--requency “oZ | | measuring the spatial
Converters SN, v
\ relationships in addition
_ TSL 230 series to light intensity.
" This family converts
sd light intensity (cLICK HERE
- information to a

digital format loe direct " Funchonally

connection to a nicre- Enhanced
controller or digital signal Optocouplers

processor (DSP), (FEO)
TPS 5904

| Addressing the
! need for added

| functionality in the
- standard optocoupler.
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Integrated Light Detectors




Integrated IR Detector for
Remote Controls




Infrared Intrusion Alarms

Passive IR (PIR) sensor has
no DC response.

Must “chop” light.
Multiple lenses chop IR from

moving warm body (intruder)
since each covers unique sector.
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Rods

Cones

More photopigment

Less photopigment

Slow response: long integration time
(can detect flickering light up to 12 Hz)

Fast response: short integration time
(can detect flickering light up to 55 Hz)

High amplification: single quantum detection

Probably less amplification

Saturating response

Nonsaturating response

Not directionally sensitive

Directionally sensitive

Highly convergent retinal pathways

Less convergent retinal pathways

High sensitivity

Low sensitivity

Low acuity

High acuity

Achromatic: one type of pigment

Polychromatic: three types of pigment

Optic disc

\ Retina

Optic nerve
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Bipolar cell Receptor

Ganglion cell

Outer
segment

Inner
Segment

Synaptic
terminal
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Photomultipliers/Night Vision
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Digital Light Valves

T

Images courtesy Texas
Instruments, Inc.
Used with permission.

mmmn‘m'mmumm&
ﬁﬂ!" i w:wn?’-"' .

"‘1"!1"'{-'
o &

6

w

EE122A, Stanford University Copyright © 2020, Prof. Greg Kovacs




Appendix 1: Brakelight LED Bars
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LED Brakelight Bars

HP part number QPWR-C397, Ford part number
F4ZV-13B506-AB

20 super-bright red LED’ s arranged as four groups of five
LED’ s in series.

Series resistor to limit LED current.
Parallel resistor for sensing - after series resistor in circuit.

Want to characterize:
— Circuit diagram with both resistors measured.

— Pulse response - drive with IRLZ-34 MOSFET and measure resulting
current on oscilloscope by using the built-in series resistor (tap in at red
lead and at point where red lead connects to circuit board, then use
Ohm’ s law to convert the voltage signal you get on the scope to current.
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Curve Tracer

g,a TYPE 576 CURVE TRACER sy room VERTICAL
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Full Range
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Lower Voltages
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Precision |-V Curve

LED Brakelight Test
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Pulse Testing
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Pulse Testing IRLZ34 Close-Up
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"Channel 1 {4OLTS)"

Pulse Drive Response

LED Brake FET Drive
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ANALOG HACKER (GREG’S) BENCH 1990s

LEX -

47 v o Ao *‘? \l" ; /‘ g /*z‘
The master bedroom of our condo was a lab... On the bench is an early
prototype for the company Cepheid, which a few of us co-founded.
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