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Overview of Optoelectronics

•  Light emission:
–  Incandescent lamps
–  Light emitting diodes
–  Laser diodes
–  Vacuum fluorescent devices
–  Plasma devices
–  Gas lasers
–  Electroluminescent devices

•  Light detection:
–  Photoconductors
–  Solar cells
–  Photodiodes
–  Phototransistors
–  Integrated photodetector chips
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Incandescent Lamps
•  Incandescent lamps - the most common type used 

around the house - rely on heating up a thin wire 
(usually tungsten, but carbon before 1907) to white 
heat.

•  The resistance of the wire increases with temperature 
(as do the resistances of most materials – “positive 
temperature coefficient of resistance”) so that it does 
not have “thermal runaway.”

•  As seen in the original Hewlett-Packard Wein bridge 
oscillator, a light bulb can be used as a regulator for 
power or amplitude.
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Incandescent Lamps

Carbon-filament lamp,
Pre-1907.

http://www.teralab.co.uk/Museum/Lamps/
Museum_Lamps_Page1.htm

http://www.lamptech.co.uk/Documents/IN%20Introduction.htm

Most developed nations have, or are
in the process of implementing phase-
out plans for incandescent lamps.



5EE122A,	Stanford	University					Copyright	©	2020,	Prof.	Greg	Kovacs	

LEDs - Overview

•  Light emitting diodes, or LEDs, are inexpensive, 
solid-state light emitters.

•  With improved new technologies, they are bright 
enough that they can be used for illumination (e.g., 
flashlights) with very low power consumption.

•  They do no emit much heat, resist shocks, and last 
for tens of thousands of hours.

•  They are increasingly being used for traffic signals, 
commercial and home lighting, LCD monitor and TV 
backlighting, etc.
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LED Mechanisms
•  When a forward bias is 

applied to an LED, electrons 
acquire enough energy to 
cross from the n+ through 
the depletion region to 
recombine in the p+ region 
(similar for holes leaving the 
valence band).

•  Photons are emitted with no 
phase relationship to each 
other (incoherent).

•  Very bright LEDs are now 
commonplace (>3 cd).

•  Direct bandgap, large 
quantum efficiency (>80%).

Typical materials:  GaP, 
GaAs, GaAsP, SiC, etc.

p+n+

Large Numbers of
Electrons

Large Numbers of
Holes

hν
Transitions on the n+
side are non-radiative.

Electron Injection
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Basic Low-Power LED

CATHODE
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ANODE
(+)
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Epoxy Lens Metal
Lead-Frame

LED
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Simple LED Drive with Resistor
•  If driving from a 

voltage source, 
should limit current 
using a series 
resistor.

•  Need to know the 
forward voltage of 
the LED to calculate 
the resistor’s value.

•  Determine the LED 
forward voltage, 
select the current 
you want (usually 
not more than 20 
mA) and compute 
RLED.

If

Vf

IMAX =
VSUPPLY
R

I = 0
When all voltage 
is dropped 
across the diodeRLED =

VSUPPLY − VfLED
ILED
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Homemade LED Illuminator
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LED Matrix Display

•  Originated by Hewlett-Packard in 1969 (the 5082-7100 
series), descendants of these displays remain among 
the most legible and beautiful (and most expensive).

•  On-board decode logic translates 4-bit parallel data into 
the LED matrix pattern.
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Example LED Display Types

Panel indicators.

7-Segment numeric.

5X7 matrix alphanumeric.
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Bench Tour: Examples
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Bench Tour: 
Examples

http://powerelectronics.com/site-files/
powerelectronics.com/files/archive/
powerelectronics.com/
power_management/led_drivers/Fig-1-
LCD-display-structure.jpg
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Bench Tour: Examples
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Improvements In LED Lighting
•  Primary goal is efficiency (lumens/watt).
•  Striving for good color temperature (warm is what people are used to, 

not bluish).
•  Reliability is key.
•  Dollars per lumen is another interesting metric.

http://www.theledlight.com.cn/led-light-img/305-us-roadmap-big.gif

http://topbulb.wordpress.com/2010/11/19/lumens-per-watt-the-next-step-of-the-white-led-revolution/
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Full-Color LED Displays

Fujitsu

http://www.adartesc.com/LED_full_color.htm

http://ecem1.myblog.it/archives/2011/10/index-25.html

http://led-screen.zapled.co.uk/outdoor-led-video-mesh-screen/
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Improvements In LED Lighting

http://www.energycircle.com/blog/2012/06/21/led-lighting-massive-opportunity-getting-better
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http://www.ledengin.com

http://www.ledssuperbright.com/
images/100W_eylane.jpg

One-chip LED - Cree XPE series, 1W.

http://www.superbrightleds.com/
moreinfo/component-leds/xpe-series-
cree-led/325/

http://www.cree.com/LED-Components-and-
Modules/Products/XLamp/Arrays-
NonDirectional/XLamp-CXA2540

Chip-On-Board (COB) array examples.
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Commercial LED Lighting
•  LED lighting is revolutionary and is taking off.

•  Initial offerings were very poor. Cheaply built, 
poorly designed and expensive too! 

•  Newer designs may well realize the long-life 
potential of LED’s 20 – 50,000 hrs.

Philips 17W, 1055 lm lamp 
(indirect phosphor).

http://www.lighting.philips.com

Ecosmart 17W, 950 lm lamp.
http://www.homedepot.com
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Flashlight Driver IC: LTC3453

http://cds.linear.com/docs/en/
datasheet/3453fa.pdf



21EE122A,	Stanford	University					Copyright	©	2020,	Prof.	Greg	Kovacs	

LTC3453

http://cds.linear.com/docs/en/
datasheet/3453fa.pdf
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Off-Line LED Driver IC: MAX16841

http://datasheets.maximintegrated.com/en/
ds/MAX16841.pdf

Note: 115 VRMS
rectified full-wave
as shown yields a
DC voltage given by:

VDC =
2VPEAK
π

= 0.637VPEAK = 0.9VRMS

VPEAK = 2VRMS

VDC = 0.9 115( ) =104V
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Off-Line LED Driver IC: MAX16841

http://datasheets.maximintegrated.com/en/
ds/MAX16841.pdf
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Visualizing Infrared Emitters
•  Infrared-emitting LEDs can be visualized using a CCD 

camera (such as a camcorder) because silicon detectors are 
sensitive to short-wavelength infrared light.

•  You can also use special infrared phototransistors (in 
smoky gray packages).

•  A simple visualizer is an IR phototransistor in series with a 
visible LED.

•  Phosphor cards are also available (Thorlabs, Edmund 
Scientific, Kodak) that “translate” IR into visible light.
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Optoisolators

LED

Glass
Insulator Silicon

Phototransistor

Input

LED

hv

Lead-Frame

•  Optoisolators are assemblages of electrically isolated emitters and 
detectors that use light to send information across a transparent 
insulator (glass, air, etc.)

•  The circuits on either side of the insulating gap can be thousands of 
volts different, and this is useful in industrial, medical (patient isolation) 
and automotive applications.

•  Most modern optoisolators use LED’s and phototransistors and have 
switching speeds in the MHz range. Special, feedback-linearized 
optoisolators exist for analog signal transmission and are covered in 
EE122B.
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Modulation of LEDs

•  LEDs can be modulated very fast, using current 
sources or simple voltage switches.

•  MHz data rates are possible, and this is a common 
way to transmit signals optically (e.g., some 
consumer audio equipment).

•  Interestingly, your retina can resolve light pulses 
in the few nanoseconds, but the perceived length 
is as much as eight orders of magnitude longer - 
this is the impulse response of your visual 
system.
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Example Blinker - LM3909

Source:  National 
Semiconductor 
LM3909 Datasheet.
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LED Bar Graph Driver - LM391X Series

Source:  National Semiconductor 
LM3914 Datasheet.

Current-source 
drive - no resistors 
required!
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Simple Gated Pulser

R1 ≈10R2 fo ≈
1
R1C

V+

CR1

Output

Gate

R2

Can use 74HC, 74HCT, or 
4000-series CMOS (4000-
series can operate over 
wider supply voltage 
ranges).
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Simple Current Driver with PWM

•   

R1 ≈
0.6
ILED

PWM Input
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Hacked Infrared Blinker

•  Easy to modify an 
inexpensive safety 
blinker light to use 
infrared LEDs instead 
of visible.

•  Can also hack the 
flash frequency.
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Solid-State Lasers

•  Single Heterojunction - pulsed - needs very small 
pulses of very large currents to lase.

•  Double Heterojunction - CW - what is in laser 
pointers, laser printers, etc.
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Hacking the Laser Pointer
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High-Power Laser Diodes

1 cm
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Avalanche Transistor Pulser

•  By triggering 
avalanche 
breakdown in 
transistors, very 
high energy, short 
current pulses can 
be obtained.

•  The energy stored 
in a capacitor is 
rapidly discharged 
through the laser.

Source:  “Semiconductor Diode 
Lasers,” R. W. Campbell and F. M. Mims, 
H. W. Sams & Co., 1972.
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Williams’ Avalanche Pulser
•  Excellent way to generate 

ultrashort pulses. 
•  Can be modified to drive lasers 

or LEDs.
•  See LTC AN-47 for details on 

choosing the transistor, etc.

Source:  Linear Technology, AN-47 
“High Speed Amplifier Techniques,” 
1991.

+ 90 VDC

2N2369

10 kΩ 50 Ω

2 pF

1 MΩ

Output



37EE122A,	Stanford	University					Copyright	©	2020,	Prof.	Greg	Kovacs	

Williams’ Avalancher on 1 GHz Scope
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Avalanche LED Driver
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Laser Tag
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Gas Discharge Lamps
•  A variety of cool 

displays can be 
achieved using gas 
discharge lamps.

•  Simple NE-2 (neon) 
lamps break down 
around 65 - 90V and 
can be used for 
blinkers and power 
indicators.

•  More complex 
devices are also 
possible.

See:  http://www.neonshop.com/
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Plasma Art

http://strattman.com/products/
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Check out:  http://strattman.com/
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Detecting Light

•  Light sensors are essential for a large variety of 
devices.

•  Examples:  optical data links, camera exposure 
meters, automatic night lights, clock display 
dimmers, etc.

•  There are basically two types to be considered in 
EE122:  junction type and photoconductors.
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Mechanisms of Light Detection
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Solar Cells

•  Solar cells are 
photojunctions that are 
designed to produce 
useable electrical power 
(theory about 100 mW/cm2 
at 100% efficiency on 
Earth).

•  Many surplus sources 
have good deals on them, 
and you can easily design 
simple circuits that are 
entirely light powered.
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In space, you can choose solar or nuclear (for now).
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Photodiodes/Phototransistors
•  Photodiodes and phototransistors (usually the 

base lead is not used, so they can be treated as 
similar parts) are common detectors for light.

•  They are capable of detecting fast light pulses (up 
to GHz rates in some cases) if they are 
appropriately designed and have fast circuitry to 
work with.

•  They are inexpensive, and are available for visible 
light and for IR (some have built-in smoky gray 
filters).
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Typical Photodiodes



49EE122A,	Stanford	University					Copyright	©	2020,	Prof.	Greg	Kovacs	

Typical Phototransistors
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Light-To-Frequency Converter

Source:  National 
Semiconductor 
LM331 Datasheet.
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Fast Optical Data Receiver

Source:  Linear Technology, AN-47 
“High Speed Amplifier Techniques,” 
1991.

Peak Detector

Max Peak

Min Peak

Midpoint
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Shannon’s Theorem

C = Blog2
S
N

+ 1! 
" 

# 
$ 

C = channel capacity in bits/second
B = bandwidth in Hz
S = signal level
N = noise level
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Photoconductors 
- The CdS Cell

•  Incoming photons of sufficient 
energy promote carriers into 
the conduction band.

•  If they have sufficiently long 
lifetimes, the resistance of the 
photoconductor decreases.

•  Thus, they act like light-
controlled resistors and can 
be substituted for ordinary 
resistors in circuits.

•  Key - they are much slower to 
respond than photojunctions!

aa

DC
+

Ammeter

Light

Ceramic
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Output
Leads

Top
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L
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Typical CdS Cells

1 cm
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Example - Light-Controlled Amplifiers

•  All of the common op-
amp configurations can 
be made light sensitive 
by substituting a CdS 
cell for one or more 
resistors.

•  Could make an amp 
that turned down the 
volume on a stereo 
when the lights were 
dimmed, or could use 
this to make a radio 
that got louder when 
the sun came up.
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Integrated Photosensors

•  There are several integrated photodetectors on 
the market, incorporating amplifiers and even 
current-to-frequency converters on the same chip 
as the photosensor.

•  Taos:  www.taosinc.com
•  Hammamatsu:  www.hamamatsu.com

Source:  
Texas 
Instruments 
Datasheet
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www.taosinc.com
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Integrated Light Detectors
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Integrated IR Detector for  
Remote Controls
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Infrared  Intrusion Alarms

Passive IR (PIR) sensor has
no DC response.

Must “chop” light.

Multiple lenses chop IR from
moving warm body (intruder)
since each covers unique sector. 
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ASIDE:  
BIOLOGICAL 

PHOTOSENSORS

Rods Cones

More photopigment Less photopigment

Slow response:  long integration time
(can detect flickering light up to 12 Hz)

Fast response:  short integration time
(can detect flickering light up to 55 Hz)

High amplification:  single quantum detection Probably less amplification

Saturating response Nonsaturating response

Not directionally sensitive Directionally sensitive

Highly convergent retinal pathways Less convergent retinal pathways

High sensitivity Low sensitivity

Low acuity High acuity

Achromatic:  one type of pigment Polychromatic:  three types of pigment

a
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Optic nerveOptic disc
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Retina
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Outer
segment
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Segment

Synaptic
terminal

Outer
segment
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Cytoplasmic space
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membrane
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Mitochondria
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Photomultipliers/Night Vision

a

Glass

Silicon

Glass

Phosphor
and

Transparent
Anode
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Digital Light Valves

Images courtesy Texas 
Instruments, Inc.
Used with permission.
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Appendix 1: Brakelight LED Bars
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LED Brakelight Bars
•  HP part number QPWR-C397, Ford part number 

F4ZV-13B506-AB
•  20 super-bright red LED’s arranged as four groups of five 

LED’s in series.
•  Series resistor to limit LED current.
•  Parallel resistor for sensing - after series resistor in circuit.
•  Want to characterize:

–  Circuit diagram with both resistors measured.
–  Pulse response - drive with IRLZ-34 MOSFET and measure resulting 

current on oscilloscope by using the built-in series resistor (tap in at red 
lead and at point where red lead connects to circuit board, then use 
Ohm’s law to convert the voltage signal you get on the scope to current.
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Curve Tracer
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Full Range
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Lower Voltages
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Precision I-V Curve
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Pulse Testing
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Pulse Testing IRLZ34 Close-Up
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Pulse Drive Response
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ANALOG HACKER (GREG’S) BENCH 1990s

The master bedroom of our condo was a lab… On the bench is an early
prototype for the company Cepheid, which a few of us co-founded.


